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ABSTRACT 

The experience of agency refers to the phenomenal experience of being the causal 
source of one’s own actions, and through them, the course of events in the outside 
world. This experience is crucial for the production of adaptive actions, and for the 
adequate communication of felt action control to peers. The present study examines 
the possibility that, on certain occasions and under specific internal and external 
constraints, people rely on explicit social information provided by their peers to revise 
their self-reports of perceived control, i.e., their judgment of agency. Specifically, we 
used a novel ecological task based on an interactive computer game. We manipulated 
well-known sensorimotor agency cues related to action control, as well as social 
information communicated to participants by two advisors. We measured the 
contributions of social and non-social sources of information to agency judgments. We 
found that at the single-trial level, participants align their JoA with advisor feedback 
based on their own performance during the task, the type of feedback provided by 
advisors, and the interaction of this social feedback with the sensorimotor agency 
cues. At the same time, JoA alignment in previous trial also predicted participants’ 
tendency to revise their JoA after social feedback. Overall, these results demonstrate 
that agency judgment is subject to social influence. This influence is the result of the 
integration of social and non-social information at the scale of a single judgment, while 
also being driven by repeated past interactions with peers. 
 
Keywords: Sense of agency; Social influence; Advice taking; Change-of-mind; 
Performance; Sensorimotor cues; Serial dependence.  
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1. Introduction 
The experience of agency, also referred to as “Sense of Agency” (SoA), is classically 
defined as the phenomenal experience of being the causal source of one’s own 
actions, and through them, the course of events in the outside world (Haggard, 2017; 
Haggard & Chambon, 2012; Synofzik et al., 2008). A functional sense of agency can 
serve the useful purpose of having a correct estimate of one’s degree of control in a 
particular context. For example, it is crucial for an airline pilot to have a correct estimate 
of their degree of control over the aircraft being flown. However, the mere feeling of 
control of the aircraft is not enough for the pilot to determine whether they are in control 
or not. In this situation, the co-pilot’s input can be useful to update the pilot’s possibly 
inaccurate estimate of perceived control.  
Under certain circumstances, information provided by peers can be critical for the 
production of appropriate actions (Kendal et al., 2009; Toelch et al., 2014). Yet, the 
conditions under which individuals integrate this ‘social’ information to revise their own 
sense of agency remains poorly characterized. Indeed, most studies have focused on 
the contribution to SoA of internal information that encompasses various agency cues 
related to different stages of action control (e.g., sensory feedback prediction, efferent 
motor commands, observed sensory feedback, see (Blakemore et al., 2002; Sidarus, 
Vuorre, & Haggard, 2017; Sidarus, Vuorre, Metcalfe, et al., 2017). In contrast, few 
studies have examined the integration of these internal sensorimotor cues with 
information from the social context (Beyer et al., 2017, 2018; Sidarus et al., 2020). 
The aim of the present study was to examine whether individuals – on certain 
occasions and under specific internal and external constraints – can rely on explicit 
social information provided by their peers to revise their own sense of agency (SoA). 
This suggestion is supported by various lines of research and empirical work. First, 
modern theoretical frameworks of SoA emphasize that a sense of agency results from 
the optimal integration of information from multiple sources, including (i) internal 
information related to the preparation and control of action, and (ii) external information 
related to the context of the action (e.g., social information) (Gallagher, 2012; Synofzik 
et al., 2013). Moreover, a significant number of studies has shown that human subjects 
show some sensitivity to social information, and occasionally modify their decisions or 
behaviours to match those of others (Jacquet et al., 2018, 2019; Olsen et al., 2019; 
Pescetelli et al., 2021; Pescetelli & Yeung, 2020). In principle, the use of social 
information allows individuals to benefit from solutions that have already been tried out 
by their peers, and is driven by the motivation to achieve an accurate representation 
of the world (but see Morin et al., 2021 for a recent discussion). 
To examine the influence of social and non-social sources of information on the SoA, 
we designed a novel computer-based experiment that mixed well-validated paradigms 
specifically developed to manipulate internal sensorimotor agency cues (Metcalfe et 
al., 2010, 2012; Metcalfe & Greene, 2007; Sidarus, Vuorre, Metcalfe, et al., 2017) and 
third-party social information (Jacquet et al., 2019). On each trial in our experiment, 
we asked participants to play a game in which sensorimotor cues were carefully 
manipulated to generate different levels of correspondence between intentions, 
actions, and action outcomes. Specifically, the game involved moving a mouse cursor 
(a box) along a horizontal bar to catch as many falling X’s as possible, while avoiding 
distractors (O’s). Participants’ motor actions produced two levels of outcome: proximal 
action outcomes, represented by the movements of the cursor on the screen, and 
distal action outcomes, represented by catching X’s and making them disappear from 
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the screen (Sidarus, Vuorre, Metcalfe, et al., 2017). Proximal and distal action 
outcomes were manipulated in two game conditions labelled "Turbulence" and 
“Magic”, respectively. Then, on each trial, participants explicitly reported their SoA 
corresponding to their sense of control over the cursor during the game.  
After this initial Judgment of Agency was produced (hereafter referred to as JoA#1), 
participants received feedback from virtual advisors. This ‘social’ feedback consisted 
of the advisor’s inference of the participant’s degree of control over the game. We 
experimentally manipulated the valence and strength of the social feedback so that it 
could deviate positively or negatively from the participant’s initial JoA to a small, 
medium, and large extent (disagreement trials), or could not deviate at all (agreement 
trials). In other word, the advisor could believe that the participant’s degree of control 
over the game was less than, greater than, or equal to what they openly reported in 
the initial JoA. Importantly, the content of the ‘social’ feedback on each trial was 
conditional on the participants’ initial JoA. After receiving social feedback, participants 
were asked to report their final, potentially revised JoA (hereafter referred to as 
JoA#2). Finally, we investigated whether the alignment of the participants’ JoA with 
advisor feedback could be modulated by social preferences. To this end, we 
manipulated the facial traits of the advisors on the dominance (dominant vs non-
dominant facial traits) and trustworthiness dimensions (trustworthy vs untrustworthy 
facial traits) (Osterhoof & Todorov, 2008).  
Our main hypothesis was that participants would revise their JoAs based on advisor 
feedback (hypothesis #1). Consistent with a number of existing studies, we expected 
this main effect to be modulated by several experimental factors, such as the strength 
of advisor feedback (hypothesis #2) (Jacquet et al., 2018, 2019), the value of advisor 
feedback and its interaction with the game condition (hypothesis #3), task 
performance (Morgan et al., 2012; Toelch et al., 2009) (hypothesis #4) and baseline 
feeling of control (hypothesis #5), and finally, ostensive communicative cues provided 
by virtual advisors’ facial traits of dominance and trustworthiness (hypothesis #6) 
(Mercier 2020; Sperber 2010; Todorov 2015; Safra 2017). 
As an exploratory hypothesis, we tested whether past interactions between 
participants and advisors – that is, the history of disagreements and agreements 
between the two parties – impacted the JoAs’ alignment with advisors’ feedback. We 
expected to observe a ‘reciprocity’ effect, whereby receiving an agreement from an 
advisor on a previous trial increased the likelihood of aligning the JoA with a 
disagreement from that same advisor on the current trial (Pescetelli et al., 2021). 
Finally, we also tested whether participants' prior JoA alignment influenced 
subsequent social information use. 
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2. Methods 
2.1. Participants 
Multilevel regression models were used to analyse the data (Gelman & Hill, 2006). 
However, conventional power calculations are difficult to perform for these models 
because of the multiple sources of variance that must be taken into account (Westfall 
et al., 2014). In the absence of existing data with regard to our research goal, sample 
size was determined a priori based on previous studies on social information use 
(Olsen et al., 2019; Pescetelli & Yeung, 2020), and constrained by participants 
availability. Given these elements, we aimed for a target sample size of 40 participants. 
Four participants were discarded due to technical error. All participants (21 females, 
mean age = 23.61, SD = 3.22) were right-handed, with normal or corrected-to-normal 
vision, and neurologically healthy. The study was approved by the local Ethical 
Committee (CER-Sorbonne Université n° 2019–CER2 SOTIPAD), and was carried out 
in accordance with the Declaration of Helsinki (World Medical Association, 2013). All 
participants provided informed consent and received payment for participating in the 
study, and reported being naive to the purpose of the experiment. 
 

2.2. Experiment 
Participants carried out 3 experimental blocks of trials (one “non-social” block and two 
“social” blocks; see General procedure below) in the presence of the experimenter. 
The experimental blocks were implemented using Psychtoolbox 3 
(www.psychtoolbox.org) in MATLAB (MathWorks Inc.).	On each trial of each block, 
participants played a computer game whose basic procedure and instructions were 
adapted from a previous study (Metcalfe & Greene, 2007). Briefly, participants were 
instructed to move a white box (the cursor) along a grey horizontal track (the proximal 
action outcome) to catch downward falling cross-shaped visual stimuli (X) on the 
screen and, at the same time, avoid touching disc-shaped stimuli (O) (the distal action 
outcome) (see Figure 1).  
Manipulation of sensorimotor cues. Three “agentive” game conditions were 
designed with the aim of manipulating internal sensorimotor agency cues by altering 
the control that participants exert over the cursor via the mouse. In the CONTROL 
condition, the objective control of the cursor by the mouse was undistorted (i.e. the 
player was objectively in full control). In the TURBULENCE condition, objective control 
was impaired by turbulences (random noise) intervening between the mouse position 
and the cursor position. Finally, in the MAGIC condition, the radius that would count 
for a ‘hit’ was extended such that the participant was credited with touching an X even 
if they had not touched it (Metcalfe et al., 2010). The X’s or O’s disappeared as soon 
as the participant caught them, but continued to fall below the grey horizontal track 
when the participant failed to catch them. A “beep” sound signalled hits and a “boop” 
signalled false alarms (i.e., catching an O instead of an X). After 8 secs of play, 
participants were asked to indicate their JoA (i.e. how much control they felt over the 
cursor, on a Likert scale from 1, "No control", to 7, "Full control") (Sidarus, Vuorre, 
Metcalfe, et al., 2017). The scale remained on the screen until participants selected a 
value between 1 and 7. Prior to the task, participants were trained both to play the 
game and to make agency judgments using the Likert scale. 
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Manipulation of social information. In the two “social” blocks, participants performed 
the agentive task described above and then received feedback from an "online player" 
(the advisor) about their degree of control during the game (see Figure 1). Advisors 
were, in reality, bogus agents designed to pseudo-randomly agree: the advisor's rating 
was consistent with the participants' initial JoA (hereafter referred to as JoA #1) in one 
third of the trials, and inconsistent in the remaining two thirds. In other words, an 
advisor could communicate via their rating that the participant was more or less in 
control than what they expressed via their own rating (disagreement trials), or was 
consistent with what they ‘perceived’ from watching their action during the game 
(agreement trials). Disagreement trials were equally split into six possible outcomes: 
the advisor’s ratings could be either higher (positive disagreement) or lower (negative 
disagreement) than the participant’s initial ratings; and positive and negative 
deviations could be either small (+1/-1 point deviation), moderate (+2/-2 points 
deviation) or large (+3/-3 points deviation). In summary, disagreement trials varied in 
terms of the valence (positive vs. negative) and the strength of the disagreement (small 
vs. moderate vs. large). The valence of the disagreement could be reversed based on 
participants’ JoA #1, to ensure that the feedback was within scale limits (between 1 
and 7). Previous studies using a similar procedure report that participants are 
confident that group evaluations are provided by real individuals (e.g. Campbell-
Meiklejohn et al., 2010; Jacquet et al., 2018, 2019; Klucharev et al., 2009).  
Manipulation of first impressions. The advisors were represented by facial avatars 
generated using FaceGen Modeller 3.5, based on methods developed by Oosterhof 
and Todorov (Oosterhof & Todorov, 2008). Facial traits varied along (i) the dominance 
dimension (108 trials, “dominance” pairs in which one advisor was represented by a 
face with predominantly dominant traits, whereas the other with predominant non-
dominant traits), and (ii) the trustworthiness dimension (108 trials, “trustworthiness” 
pairs in which one advisor was represented by a face with predominantly trustworthy 
traits, whereas the other was represented with predominant untrustworthy traits), with 
the aim of manipulating the participants’ first impressions about the advisors’ social 
intentions. The two advisors had masculine facial traits and represented a Caucasian 
phenotype. The first reason is that computerized faces are bold (a physical feature 
which is more likely in males) in order to facilitate the detection of facial expressions. 
The second reason is that the perception of dominance and untrustworthiness 
depends on morphological features that are more widely distributed in the male 
population (Oosterhof & Todorov, 2008). The third reason is that we wanted to avoid 
variation in stereotypes that could affect advice taking. Trials in which the participants 
interacted with avatars varying on either the dominant dimension or the 
trustworthiness dimension were distributed into two distinct “social” blocks. In each of 
these “social” blocks, participants interacted in a sequential way with two advisors who 
pseudo-randomly displayed their feedback (e.g., in trial x the feedback was provided 
by a “dominant” advisor, in trial y the feedback was provided by a “non-dominant” 
advisor). After each advisors’ feedback, participants were asked to give a second 
control rating (second JoA, hereafter referred to as JoA #2) before moving on to the 
next trial (see Figure 1). 
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FIGURE 1 | Typical trial of the “social” block: before they were asked to give a second control 
rating, feedback was given to participants by one of the two advisors. The extent to which 
participants were influenced by social feedback was estimated by comparing the first (JoA #1) and 
second (JoA #2) JoA. In this example, the feedback provided by the advisor (top advisor, solid line) 
substantially changes the participant’s JoA, from 6 (JoA #1) to 3 (JoA #3).  

 

General procedure. The experimental sessions were conducted on the experimental 
platform of the INSEAD-Sorbonne Université Behavioural Lab. The participants were 
tested in a dedicated room including a computer connected to the local network by a 
cable visible to the participants. Each participant was brought individually in front of 
the computer, and was equipped with noise-cancelling headphones.  
The experimental protocol was carried out in two sessions on two different days in 
order to reduce the effect of fatigue, and separated by a period of at least three days. 
Each session lasted approximately 45 minutes. The first session started by a short 
training of 18 trials. Then, the experiment started and the participants had to complete 
a short “non-social” block where each of the 18 trials that composed it consisted in 
playing the game and producing JoAs. This “non-social” block allowed us to measure 
the participants’ baseline JoAs, i.e. JoAs that could be influenced by the sensorimotor 
cues (Turbulence and Magic) and task performance only, and not by social information 
or social preferences. After having completed this “non-social” block, participants were 
asked to freely choose a nickname and select a facial avatar among 9 possible 
computerized faces drawn from the Todorov’s database. They were then asked to 
complete consecutively two distinct “social” blocks of 108 trials each (i.e. 216 trials in 
total): one displaying the “dominance” pairs and the other displaying the 
“trustworthiness” pairs. The order of the two social blocks was counterbalanced across 
participants. In each of them, participants performed 36 trials of each “agentive” game 
condition (Turbulence or Magic or Control). Importantly, after every 9 trials of these 
“social” blocks, participants were presented with an 8 seconds duration movie 

2 s

How much in control 
did you feel ? 

No
control

Full 
control

1 2 3 4 5 6 7  

1 2 3 4 5 6 7 

How much in control 
did you feel ? 

No
control

Full 
control

1 2 3 4 5 6 7  

game initial JoA
JoA #1

advisor
feedback

second JoA
JoA #2

8 s self-paced self-paced

1 2 3 4 5 6 7 
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featuring the advisor playing the game and producing a JoA (observational trials). In 
each movie, the simulated performance and control of the advisors over the cursor 
were varied in a similar way as it was varied for the participants. Then, participants 
had to rate advisor's degree of control over the cursor. These trials were not included 
in the total trial count and were not analyzed. The rationale for presenting these 
observational trials was to make the online game more realistic and to further convince 
the participant that the social feedback was provided by real advisors.  
 
 

3. Data analyses 
Data were analysed using the lme4 (Bates et al., 2015) package in R version 3.4.1 
(Team, 2014). All fixed effects of our statistical models were allowed to vary between 
participants (i.e., participants’ uncorrelated random intercepts and slopes). Regression 
coefficients (𝛽) of the models of interest, their associated statistics, as well as 
bootstrapped 95% confidence intervals, are reported. We checked for multicollinearity 
by calculating a variance inflation factor (VIF) for each regressor (Shieh & Fouladi, 
2003) (see Supplementary Material for details). 
Dependent variables. Statistical analyses were performed on three dependent 
variables, collected on a trial-by-trial basis: Performance, JoA #1, and JoA alignment.  
Performance was assessed, on each trial, by calculating a hit rate provided by the 
number of touched X’s divided by the sum of the number of touched X’s and missed 
X’s) (see Supplementary Material for further analyses on d-prime scores).  
As specified above, JoA #1 corresponds to the initial judgment of agency (from 1, "No 
control", to 7, "Full control") produced right after the game, whereas JoA alignment 
corresponds to all cases where participants adjusted their JoA #2 (i.e., the second JoA 
produced after the presentation of the advisors’ feedback) in line with the information 
provided by the advisor. JoA alignment was calculated across all disagreement trials 
(large, moderate, and small positive/negative disagreements), and was coded as 
follows: No JoA alignment = 0, JoA alignment = 1. JoA alignment is considered a proxy 
of a participant’s susceptibility to social influence.  
 

3.1. Model 1 (ℳ1). Effect of game conditions on performance.  
As preliminary analyses, we first checked the ability of our experimental paradigm to 
correctly manipulate the internal agency cues, in line with previous research (Metcalfe 
et al., 2010, 2012; Metcalfe & Greene, 2007; Sidarus, Vuorre, Metcalfe, et al., 2017). 
For this, we used the following linear regression: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	 = 	𝛽. + 𝛽0. 𝑇𝑢𝑟𝑏 + 𝛽5.𝑀𝑎𝑔𝑖𝑐 + 𝛾. 𝛧	 + 𝜀 

where 𝛾. 𝛧 is the random term; Turb (deviation coding: turbulence = 1, control = -1, 
magic = 0) and Magic (deviation coding: magic = 1, control = -1, turbulence = 0) 
represent the agentive game conditions, and Performance is the dependent variable. 
It is noteworthy that game conditions were "deviation coded" in this model as well as 
in the following (see ℳ2  and ℳ3 below). As such, the parameter estimate (𝛽) for the 
Turbulence condition is the mean of the dependent variable for Turbulence condition 
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minus the mean of the dependent variable for the Control and Magic conditions 
combined. Likewise, the 𝛽 for the Magic condition is the mean of the dependent 
variable for the Magic condition minus the mean of the dependent variable for the 
Control and Turbulence conditions combined. The intercept (𝛽.) is the grand mean. 
The 𝛽 of each variable – and its associated t-tests (t, p), calculated using the 
Satterthwaite approximation for degrees of freedom (Kuznetsova et al., 2017) – 
represents its independent contribution to trial-by-trial fluctuations in Performance. We 
expected Turb and Magic to have a significant negative and positive effect on 
Performance, respectively. 

 

3.2. Model 2 (ℳ2). Non-social predictors of JoA #1.  
We then performed a second preliminary analysis on the JoA#1 ratings. Instead of 
modelling JoA #1 ratings with a linear model, we treated them as a proportion of the 
maximum JoA #1 rating (i.e. 7), using the same method as Sidarus and colleagues 
(Sidarus, Vuorre, & Haggard, 2017). This transformation of the dependent variable 
was made possible by the fact that (i) JoAs ratings were bounded at 1 and 7, and (ii) 
a logistic model treating JoA #1 as a proportion predicted JoA #1 better than a linear 
model (see Supplementary Material; Figure S1 for details), suggesting a curvilinear 
relationship between JoA #1 and their predictors (see also Figure 3B). For this 
purpose, we used the following logistic regression: 

𝑙𝑜𝑔𝑖𝑡 𝐽𝑜𝐴	#1
7 = 	𝛽. + 𝛽0. 𝑇𝑢𝑟𝑏 + 𝛽5.𝑀𝑎𝑔𝑖𝑐 + 𝛽C. 𝑃𝑒𝑟𝑓 

+	𝛽D. 𝑇𝑢𝑟𝑏 ∗ 𝑃𝑒𝑟𝑓 + 𝛽F.𝑀𝑎𝑔𝑖𝑐 ∗ 𝑃𝑒𝑟𝑓	 + 	𝛾. 𝛧	 + 𝜀		 

where 𝛾. 𝛧 is the random term; Turb (deviation coded: turbulence = 1, control = -1, 
magic = 0) and Magic (deviation coded: magic = 1, control = -1, turbulence = 0) 
represent the agentive game conditions; Perf refers to the effects of the hit rate 
(standardized between participants); Turb*Perf and Magic*Perf represent the 
interaction terms between the game conditions and performance during the game; and 
JoA#1 is the dependent variable. The parameter estimate (𝛽) of each variable, and its 
associated statistics (z-scores and p-values), calculated using the Wald method 
(Bates et al., 2015), represents its independent contribution to the trial-by-trial 
fluctuations in JoA #1.  
We expected Turb to have a significant negative effect on JoA #1. We also expected 
Magic to have a significant negative effect on JoA #1. We further explored whether, in 
the Magic condition, participants' JoA was less influenced by their performance than 
in the other game conditions. A decrease in the effect of performance on JoA #1 in 
this condition would mean that participants are more aware of the artificially enhanced 
disappearance of the touched X’s (i.e. they are more aware of their lack of control) 
when performance is high than when it is low. If this is the case, then Magic*Perf 
should have a significant positive effect on JoA #1. 

 

3.3. Model 3 (ℳ3). Social and non-social predictors of JoA 
alignments.  
After checking that the game conditions had an impact on participants’ performance 
and judgments of agency (JoA #1) in the expected directions, we tested our main 
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hypotheses, namely: whether and how individuals revise their JoA based on advisors’ 
feedback (hypothesis #1), and what sources of information – social or non-social – 
contribute to JoA revision (hypothesis #2 to #6). To this aim, we used the following 
logistic regression: 

𝑙𝑜𝑔𝑖𝑡(𝐽𝑜𝐴𝑠	𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡) 	= 	𝛽. + 𝛽0. 𝑇𝑢𝑟𝑏 + 𝛽5.𝑀𝑎𝑔𝑖𝑐 + 𝛽C. 𝑃𝑒𝑟𝑓 
+𝛽D. 𝐽𝑜𝐴	#1	 +	𝛽F. 𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 𝛽L. 𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ	 
+	𝛽N. 𝑇𝑢𝑟𝑏 ∗ 𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 𝛽O.𝑀𝑎𝑔𝑖𝑐 ∗ 𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	𝑣𝑎𝑙𝑒𝑛𝑐𝑒 

+	𝛽P. 𝑂𝑓𝑓𝑙𝑖𝑛𝑒	𝑚𝑒𝑎𝑛	𝐽𝑜𝐴	 +	𝛽0.. 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	 + 		𝛾. 𝛧	 + 𝜀 

where JoAs alignment is the dependent variable; 𝛾. 𝛧 is the random term; Turb 
(deviation coded: turbulence = 1, control = -1, magic = 0) and Magic (deviation coded: 
magic = 1, control = -1, turbulence = 0) represent the agentive game conditions; Perf 
refers to the hit rate (standardized between participants, see Supplementary Material 
for further analyses on d-prime scores); JoAs #1 controls for a possible regression-to-
the-mean effect (Izuma & Adolphs, 2013); Disagreement valence (positive =  0.5 vs. 
negative -0.5 disagreement) and Disagreement strength (strong = 0.5 vs. moderate = 
0 vs. low = -0.5) represent the differences between the advisor’s feedback and the 
participant’s JoA #1 in the “social” blocks; Turb*Disagreement valence and 
Magic*Disagreement valence represent the interaction terms between the game 
conditions and the valence of the advisor feedback; Offline mean JoA represents each 
participant’s mean agency ratings during the “non-social” block and is used as a proxy 
of the participant’s baseline feeling of control; Previous alignment represents the 
participant’s behaviour during the previous disagreement trial, when confronted with 
the same advisor, and was coded as previous JoAs alignment = 0.5, No previous JoAs 
alignment = -0.5. The parameter estimate (𝛽) of each variable – and its associated 
statistics (z-scores and p-values), calculated using the Wald method (Bates et al., 
2015) – represents its independent contribution to trial-by-trial fluctuations in JoA 
alignment.  
Hypothesis #1 states that participants align their JoAs on the advisor’s feedback. This 
hypothesis is supported by numerous studies using similar social influence paradigms 
(Campbell-Meiklejohn et al., 2010; Jacquet et al., 2018, 2019; Klucharev et al., 2009). 
However, given that in laboratory settings human subjects tend to downweigh social 
information in favour of personal information even when it is not adaptive to do so 
(Morin et al., 2021), we expected JoA alignment to occur less than half the time on 
average in our group of participants.  
Hypothesis #2 states that JoA alignment is modulated by the strength of 
disagreement between participants’ initial JoA and the advisor’s feedback. Indeed, 
previous studies showed that participants' reevaluation of their own judgments after 
receiving peer feedback scales with the strength of peer disagreement (Campbell-
Meiklejohn et al., 2010; Jacquet et al., 2018, 2019; Klucharev et al., 2009). We 
therefore expected that the greater the disagreement with the advisor, the more 
participants would align their JoAs (β5).  
Hypothesis #3 states that JoA alignment is modulated by the game conditions (β1, β2) 
and their interaction with the valence of disagreement. This hypothesis is based on 
research (Metcalfe et al., 2010; Metcalfe & Greene, 2007) that reported that individuals 
are aware of their lack of control over the outcomes of their actions in the Turbulence 
and Magic game conditions especially. We can therefore predict that in these two 
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game conditions specifically, participants would not align their second JoA when the 
value of the advisor’s feedback is greater than the value of their initial JoA, i.e. when 
the valence of disagreement is positively signed (β7, β8). 
Hypothesis #4 states that JoA alignment is modulated by task performance. This 
hypothesis is motivated by previous studies related to other cognitive domains that 
have shown that task difficulty is positively related to social information use (Morgan 
et al., 2012; Toelch et al., 2009). As a result, we expected participants’ performance 
during the game – a well-used proxy for task difficulty – to have a significant negative 
effect on JoAs’ alignment (β3).  
Hypothesis #5 states that participants’ baseline feeling of control – here understood 
as a correlate of performance that is independent of the degree of susceptibility to 
social influence – predicts their individual tendency to discount social information. This 
hypothesis is supported by studies that have shown that individual performance is 
positively correlated with individual feeling of control (Metcalfe et al., 2012; Metcalfe & 
Greene, 2007) on the one hand, and negatively correlated with the use of social 
information on the other hand (Morgan et al., 2012; Toelch et al., 2009). We therefore 
expected that those of the participants who displayed a high baseline feeling of control 
would be less likely than other participants to align their JoA during the game with the 
advisor’s feedback (β9).  
Hypothesis #6. In three additional extensions of this model (see ℳ3c,d,e in the 
Supplementary Material), we tested a 6th and final hypothesis stating that the social 
intentions that participants could infer from advisors’ facial traits (i.e. their first 
impressions) modulate their propensity to take social feedback into account when 
revising their JoA. This hypothesis originates from the idea that individuals reason 
about their informant, often unconsciously or implicitly, and infer the trustworthiness of 
communicated information on the basis of ostensive cues (Mercier, 2020; Sperber et 
al., 2010). Previous research has focused on several ostensive cues, such as 
perceived dominance and trustworthiness of others' facial traits (Safra, 2017; Todorov 
et al., 2015). Based on this literature, we expected that perceived trustworthiness 
would elicit more JoA alignment than perceived untrustworthiness, and perceived non-
dominance compared to perceived dominance. 
Exploratory hypothesis. Finally, we investigated whether past interactions between 
participants and advisors could have an impact on JoA alignment. During the “social” 
blocks, participants were paired with two advisors. On each trial, one of the two 
advisors provided feedback to the participant. We therefore investigated whether 
participants' JoA alignment produced during the current trial correlated with the JoA 
alignment produced during their previous interaction with the same advisor (β10). We 
then explored the impact of past agreement on subsequent JoA alignment in an 
independent version of the logistic regression model presented above (ℳ3b; see 
Supplementary Material for details).  
 
 

4. Results 
We dropped 7 participants from the analyses, either because they never aligned their 
agency ratings to the advisor’s feedback during the “social” blocks, or because they 
were outliers on objective performance during the game (using the 1.5 times 
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interquartile range criterion (Tukey, 1977)). Our final sample thus consisted of 29 
participants aged 19 to 31 years old (mean = 23.34, sd = 3.18). 
 

4.1. Model 1 (ℳ1). Effect of game conditions on performance 
Thereafter, we report the results of the linear model of performance (ℳ1; Nobs = 6786; 
Nsubj = 29); (see Supplementary Material; Table S1 for details). This model included a 
by-subject random intercept. The agentive game conditions were treated as fixed 
effects between subjects because the model did not converge when we treated 
agentive game conditions as a by-subject random effect.  
Results showed that Turb had a significant negative effect on Performance (ℳ1; mean 
hit rate difference = 0.113, 𝛽 = -0.075, t(27.993)= - 30.69, p < 2e-16, 95% CI = [-0.080, 
-0.071]; see Figure 2). As expected, participants' objective performance (hit rate) 
during the game was significantly lower in the Turbulence trials compared to the No-
Turbulence (combined Magic and Control conditions) trials. On the other hand, the 
Magic condition had a significant positive effect on Performance (ℳ1; mean hit rate 
difference = 0.156, 𝛽 = 0.104, t(27.100) = 46.37, p < 2e-16, 95% CI = [0.099, 0.109]; 
see Figure 2). Finally, performance was significantly higher in the Magic trials relative 
to the other trials (trials from the combined Turbulence and Control conditions).  

 
FIGURE 2 | Effect of sensorimotor cues on mean performance (ℳ1): Effect of sensorimotor 
cues on mean hit rate. Black error bars show the standard error of the mean. Green error bars 
show 95% prediction intervals obtained from 10,000 posterior distribution of plausible game 
conditions parameters values under uniform priors (Gelman et al., 2018). 

 

4.2. Model 2 (ℳ2). Non-social predictors of JoA #1 
Thereafter, we report the results of the logistic model of JoAs #1 (ℳ2; Nobs = 6786; 
Nsubj = 29); (see Supplementary Material; Table S2 for details). 
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Results revealed that Perf had a significant positive effect on JoA #1 (ℳ2; 𝛽 = 0.415, 
p < 2e-16, 95% CI = [0.347,0.479]; see Figure 3A & 3B). As expected, JoAs #1 
increased with performance. In addition, results showed that Turb had a significant 
negative effect on JoA #1 (ℳ2; 𝛽 = -0.554, p = 1.63e-13, 95% CI = [-0.703,-0.410]; 
see Figure 3A & 3B), meaning that JoAs #1 were significantly lower in the Turbulence 
condition. Surprisingly, our results showed that Magic had a significant positive effect 
on JoA #1 (ℳ2; 𝛽 = 0.354, p = 3.43e-14, 95% CI = [0.269,0.450]; see Figure 3A & 3B), 
with participants reporting higher JoAs #1 in the Magic condition. We also found no 
conclusive evidence that the effect of performance on JoAs #1 was modulated by 
Magic (ℳ2; non-significant interaction between Magic and performance: 𝛽 = 0.011, p 
= 0.706, 95% CI = [-0.050,0.065]; see Figure 3A & 3B). In order to specifically contrast 
the effect of the Magic condition versus Control condition on JoA #1, we conducted 
further analysis using the ℳ2 model including Game agentive conditions (Control, 
Turbulence and Magic) as a categorical variable after dummy coding (instead of 
deviation contrast coding), with the Control condition as the reference level. Using this 
version of the model (ℳ2b), our results showed that JoAs #1 were significantly 
increased in the Magic versus Control condition (see ℳ2b in Supplementary Material; 
Table S3 for details; 𝛽 = 0.154, p = 1.21e-4, 95% CI = [0.075, 0.231]). Overall, these 
results confirm that participants in our study did not report a lack of control in the magic 
condition, after controlling for performance. On the contrary, participants reported 
higher JoAs #1 in the Magic condition. We will discuss possible reasons for this finding 
later (see Discussion). 
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FIGURE 3 | Predictors of JoA #1 (ℳ2): (A) Parameter estimates, with bootstrapped 95% 
confidence intervals, from the logistic model of JoA #1 (Performance Z-scored between 
participants). (B) Average JoA #1 across participants (points) and ℳ2 model predictions 
(regression lines, and shaded 95% prediction intervals) for the relation between the effect of Game 
conditions on JoA #1 and participants’ performance. Predictions were obtained from 10,000 
simulations from the posterior distribution of plausible parameter values under uniform priors 
(Gelman et al., 2018).  

 
4.3. Model 3 (ℳ3). Non-social and social predictors of JoA alignment 
JoA alignment was assessed during the “social” blocks, in which participants received 
feedback from advisors on their level of control during the game. In this section, the 
results of the logistic model of JoA alignment (ℳ3; Nobs = 4172; Nsubj = 29) were 
reported (see Supplementary Material; Table S4 for details). 
Hypothesis #1. Results of the ℳ3 model first revealed that during these blocks, 
participants aligned their JoA #2 in the direction of the information provided by the 
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advisors in 4.1% to 76.3% (depending on the participant) of the disagreement trials. 
On average, the proportion of JoA alignment was significantly higher than zero (JoAs 
alignment = 29.167%, S.E.M = 0.033; two-tailed one sample Wilcoxon signed rank 
test; V-statistic = 435; p-value = 2.697e-06). These results support hypothesis #1, 
which suggests that participants occasionally revise their JoA based on the advisor’s 
feedback. Note, however, that on average participants aligned their JoA less than half 
the time, regardless of the type of social feedback (proportion of JoA alignments <50%: 
two-tailed one sample Wilcoxon signed rank test; V-statistic = 407.5; p-value = 4.166e-
05). The fact that JoA alignments are less frequent than non-alignments is consistent 
with previous research showing that individuals downweigh the advice they receive 
from a social source in favour of their own initial beliefs (for a recent review, see (Morin 
et al., 2021)).  
Hypothesis #2. Our analysis further revealed that the strength of disagreement had a 
significant and positive effect on JoA alignment (ℳ3; 𝛽 = 0.597, p = 1.29e-4, 95% CI 
= [0.289, 0.929]; see Figure 4A & 4C), such that participants were more likely to align 
their JoA with the advisor’s feedback when that feedback expressed strong 
disagreement with their initial JoA #1. Our results also showed that the valence of 
disagreement had a significant and positive effect on JoA alignment (ℳ3; 𝛽 = 0.304, 
p = 0.042, 95% CI = [0.012,0.629]; see Figure 4A & 4B). Overall, participants were 
more likely to align their JoA with advisors when advisors provided a positive 
disagreement than a negative disagreement (i.e. the advisor judged the participant to 
be more in control than the participant reported).  
Hypothesis #3. We then found that the Turb*Disagreement valence interaction term 
had a significant and positive effect on JoA alignment (ℳ3; significant positive 
disagreement by Turbulence condition interaction: 𝛽 = -0.762, p = 1.41e-08, 95% CI = 
[-1.031,-0.512]; see Figure 4A & 4B). As expected, the effect of positive disagreement 
on JoA alignment was weaker in the Turbulence condition than in the other game 
conditions. Furthermore, we found no conclusive evidence that the game conditions 
had an effect on JoA alignment (ℳ3; Turbulence condition: 𝛽 = -0.062, p = 0.378, 95% 
CI = [-0.207, 0.077]; Magic condition: 𝛽 = 0.138, p = 0.074, 95% CI = [-0.010, 0.303]; 
see Figure 4A). Post-hoc tests showed several interesting features. First, in the 
Turbulence condition, participants were less likely to align their JoA #2 when advisors 
provided positive disagreements than when they provided negative disagreements (𝛽 
value for the difference between positive and negative disagreements conditions = -
0.457, Wald test z-score = -1.997, p = 0.023; see Figure 4B). Interestingly, an opposite 
effect was observed in both the Magic and Control conditions (𝛽 value for the 
difference between positive and negative disagreements conditions in the Magic game 
condition = 0.980, Wald test z-score = 5.107, p = 2e-07; 𝛽 value for the difference 
between positive and negative disagreements conditions in the Control game 
condition = 0.391, Wald test z-score = 2.190, p = 0.014; see Figure 4B). Second, when 
disagreements were positively signed, participants were less likely to align their JoA 
#2 in the Turbulence condition than in the other two game conditions (𝛽 value for the 
difference between Turbulence and Control conditions = -0.4108061, Wald test z-
score = -2.625, p = 0.004; 𝛽 value for the difference between Turbulence and Magic 
conditions = -0.918, Wald test z-score = -4.818, p = 7.234e-07; see Figure 4B). In 
contrast, when disagreements were negatively signed, participants were more likely 
to align their JoA #2 in the Turbulence condition than in the other conditions (𝛽 value 
for the difference between Turbulence and Control conditions = 0.438, Wald test z-
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score = 2.858, p = 0.002; 𝛽 value for the difference between Turbulence and Magic 
conditions = -0.519, Wald test z-score = 3.070, p = 0.001; see Figure 4B).  
The Magic*Disagreement valence interaction term was also significant: the effect of 
positive disagreement on JoA alignment was higher in the Magic condition than in 
other conditions (ℳ3; significant positive disagreement by Magic condition interaction: 
𝛽 = 0.675, p = 9.47e-07, 95% CI = [0.414, 0.946]; see Figure 4A & 4B). Post-hoc tests 
indeed showed that participants were more likely to align their JoA #2 in the Magic 
condition than in other game conditions when disagreements were positive (𝛽 value 
for the difference between Magic and Control conditions = 0.507, Z-score = 2.751, p 
= 0.003; 𝛽 value for the difference between Magic and Turbulence conditions = 0.918, 
Z-score = 4.818, p = 7.234e-07; see Figure 4B) than when they were negative (𝛽 value 
for the difference between Magic and Turbulence conditions = - 0.519, Wald test z-
score = - 3.070, p = 0.001; see Figure 4B).  
Hypothesis #4. Consistent with our prediction from hypothesis #4, we found evidence 
suggesting that participants' propensity to use social information in the context of our 
task was modulated by its difficulty, as shown by the negative effect of Perf on JoA 
alignment (ℳ3; Hit rate: 𝛽 = -0.192, p = 0.001, 95% CI = [-0.306, -0.070]; see Figure 
4A & 4C). This result therefore confirms that performance reduces the alignment of 
JoA (hypothesis #4). 
Hypothesis #5. Examining the effect of the Offline JoA variable does not support 
hypothesis #5. Indeed, this variable had no significant effect on JoA alignment (ℳ3; 𝛽 
= -0.322, p = 0.118, 95% CI = -0.725, 0.073]; see Figure 4A). Results did not provide 
conclusive evidence that participants who displayed a higher baseline sense of control 
were not less likely than other participants to align their JoA with the advisor’s 
feedback. Nevertheless, the upper bound of the 95% confidence intervals of the 
parameter distribution suggests that participants with a higher Offline JoA (a higher 
baseline sense of control) tended to produce a lower JoA alignment in social blocks.  
Hypothesis #6. Finally, results from extensions of the ℳ3 model did not produce 
conclusive evidence that social intentions derived from participants' first impressions 
(formed from advisors’ facial features) modulated JoAs' alignment (see ℳ3c,d,e in 
Supplementary Material section 10.6 for details). 
Exploratory hypothesis. Interestingly, the analysis revealed that Previous alignment 
had a significant and positive effect on JoA alignment (ℳ3; 𝛽 = 0.214, p = 0.012, 95% 
CI = [0.033, 0.391]; see Figure 4A & 4D). Thus, above and beyond the contribution of 
non-social and social information at the level of the current trial, participants were more 
likely to align their JoA #2 with feedback from a particular advisor when they had done 
so in previous trials. In contrast, we found no conclusive evidence that past agreement 
had an effect on JoA alignment (ℳ3b; β = 0.119, p = 0.139, 95% CI = [-0.035, 0.281]; 
see Supplementary Material; Table S5 for details).  
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FIGURE 4 | Predictors of JoA alignment (ℳ3): (A) Parameter estimates, with bootstrapped 95% 
confidence intervals, from the logistic model of JoA alignment (Hit rate Z-scored between 
participants). (B) Relation between JoA alignment, disagreement valence and game conditions. 
Black error bars show the standard error of the mean of JoA alignment across participants in the 
different conditions. Green error bars show 95% prediction intervals obtained from 10,000 
simulations from the posterior distribution of plausible Disagreement valence and game conditions 
parameter values under uniform priors (Gelman et al., 2018). Stars indicate significance: * for p < 
0.05, ** for p < 0.01, and *** for p < 0.001 (C) JoA alignment (%) across participants (points) and 
ℳ3 model predictions (regression lines, and shaded 95% prediction intervals) for the relation 
between the effect of Disagreement strength on JoA alignment and participants’ Hit rate. 
Predictions were obtained from 10,000 simulations from the posterior distribution of plausible 
parameter values. (D) Relation between JoA alignment during previous interaction (with the same 
advisor) and JoA alignment in the current trial (%). Black error bars show the standard error of the 
mean of JoA alignment across participants. Green error bars show 95% prediction intervals 
obtained from 10,000 from the posterior distribution of plausible Social context parameter values.  
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5. Discussion 
The aim of the present study was to investigate the conditions under which individuals 
revise their agency judgments in light of feedback produced by a third party (social 
information) about their own agentive experience. 
In this study, we experimentally manipulated (i) sensorimotor cues related to action 
control (control vs turbulence vs magic game conditions), (ii) the content of social 
feedback provided by an external advisor (strength and valence of disagreement), as 
well as iii) the social preferences evoked by the advisor’s facial traits (dominant vs 
non-dominant; trustworthy vs untrustworthy). We then analysed the effect of these 
factors on two types of information: participants’ performance during the game, and 
the judgment of agency produced before (JoA #1) and after (JoA #2) the presentation 
of the advisor’s feedback.  
Our results reveal that under specific constraints, and given past social interactions, 
participants rely on explicit social information (the feedback provided by the advisors) 
to revise their own JoA. This reliance on social information must be contrasted, 
however, with the fact that in a large majority of trials, participants did not align their 
JoA with advisors’ judgments. This supports the presence, at least in laboratory social 
learning tasks, of a pervasive phenomenon of egocentric discounting whereby 
participants downweigh social information in favour of personal information even when 
it is not adaptive to do so (for a recent review, see (Morin et al., 2021)).  
 

5.1 Contribution of non-social information to JoA alignment 
We first observe that the alignment of JoAs with advisor feedback is modulated by the 
non-social information conveyed during the experiment. In particular, participants’ 
performance during the game conditioned the use of social information: participants 
were less likely to align their JoAs with social feedback when their performance during 
the game was higher (see model ℳ3 and Figure 4A & 4C). This result is consistent 
with previous studies, related to other cognitive domains, that provide converging 
evidence of increased social information use as a function of task difficulty (Morgan et 
al., 2012; Toelch et al., 2009). Indeed, JoA depends on objective performance during 
the task (Metcalfe & Greene, 2007; Sidarus, Vuorre, Metcalfe, et al., 2017). 
Performance is therefore a reliable cue to consider when evaluating social information 
about our own JoA. One possible mechanism for this association between 
performance and social information use is that objective performance during the game 
(i.e. related to the number of hits accumulated) supports the formation of a context-
specific sense of performance. This sense of performance would be exploited to 
evaluate an information (here, a social information) related to a different cognitive 
process (the JoA). This possibility supports the debated hypothesis that a sense of 
confidence based on context-specific information (e.g. performance on a specific task) 
can be used as a domain-general resource that is recruited to assess information 
across different cognitive domains (Rouault et al., 2018). Future studies could also 
examine whether this mechanism also applies to more global estimates of 
performance over longer time scales. 
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FIGURE 5 | Predictors of JoA alignment. Typical trial of the “social” block with brown arrows 
representing the different social and non-social predictors of JoA alignment. Interaction effects 
between predictors are not shown here (ℳ3, see "Results" for details).   
 

5.2 Interplay between non-social and social information  
Our study further examined the interaction between non-social information and social 
information, and the effect of this interaction on participant’s behaviour. As mentioned, 
the task allows for distinguishing between (i) the outcome of a proximal action, which 
corresponds to the movement of a cursor, and which is altered in the Turbulence game 
condition, and (ii) the outcome of a distal action, which corresponds to the 
disappearance of X’s when touched by the cursor, and which is artificially enhanced 
in the Magic game condition (Sidarus, Vuorre, Metcalfe, et al., 2017). In the latter 
condition, participants were credited with touching an X even though they did not 
actually touch it. Our results show that the weight participants place on social 
information depends on the correspondence between the valence of social information 
and the disruption of proximal action outcomes (Turbulence condition, see Model ℳ3 
and Figure 4A & 4B). Indeed, in the Turbulence game condition, relative to other game 
conditions, participants discounted social information more when it conflicted with 
sensorimotor information suggestive of lack of control (see model ℳ3 and Figure 4A 
& 4B). Conversely, they discounted social information less when it agreed with 
sensorimotor information indicating a lack of control (see model ℳ3 and Figure 4A & 
4B).  
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Interestingly, in the Control game condition, in which objective mouse control of the 
cursor was not distorted, participants were more likely to be influenced by advice when 
disagreements were positive vs. negative (see model ℳ3 and Figure 4A & 4B). One 
possible explanation for this result is related to the self-serving bias that predicts a 
higher sense of agency for desired outcomes (Chambon et al., 2020; Shepperd et al., 
2008). We speculate that this “optimistic” bias would further induce a "self-serving 
advice bias", which makes people more likely to value advice that promotes control 
over desired outcomes (touching X’s in our study). 
We also observed a modulation of the weight given to social information according to 
the valence of the social information in the Magic condition, which implemented a 
disruption of the distal action outcome (artificially enhanced in this condition). Indeed, 
in this game condition, relative to the other conditions, participants were more likely to 
align their JoA with positive social feedback when it did not match sensorimotor 
information suggestive of (abnormally) increased control over distal action outcome 
(see model ℳ3  and Figure 4A & 4B). In addition, participants relied less on social 
information when it was consistent with this internal sensorimotor information (see 
model ℳ3 and Figure 4A & 4B). This result may be explained in part by the fact that 
participants were asked to rate their sense of control over cursor movements (the 
proximal action outcome), movements that were not disrupted in the Magic condition. 
Thus, participants had no reason to report a decrease in JoA in this game condition, 
in which only the distal action outcome was disrupted. It should be noted that in 
previous studies using the same game, participants were asked about their sense of 
control “during the game”. As a result, participants accounted for the disruption of the 
distal action outcome in the Magic condition and, in fact, reported a reduced JoA, after 
controlling for performance. Future studies are needed to test whether, for the same 
game condition, participants’ JoA #1, as well as participants’ use of social information, 
differ depending on the instructions given, and whether their metacognitive processes 
are involved in evaluating the link between action and proximal action outcome, or 
between action and distal action outcome.  
 

5.3 Contribution of social feedback to JoA alignment 
Interestingly, participants were on average more likely to align their JoA with advisor 
judgments when those judgments expressed strong disagreements. This result is 
consistent with previous research using experiments in which a third party provides 
social feedback (Jacquet et al., 2018, 2019; Klucharev et al., 2009). A classic 
explanation for these results is that the discrepancy between one’s own judgment and 
that of one’s advisor induces a conflict that recruits brain areas that play an important 
role in reward-driven behaviours (Wu et al., 2016). This conflict would therefore 
motivate individuals to subsequently modify their response (i.e. conform) in order to 
decrease the discrepancy. However, this account does not explain why, in our study, 
participants' JoA alignment is conditional on prior non-social agency cues (i.e. 
performance during the game and game conditions), as discussed above. Similarly, it 
does not explain the observed egocentric discounting phenomenon already 
mentioned.  
A more plausible explanation, consistent with another line of research, is related to the 
confirmation bias (Nickerson, 1998). This bias refers to people’s tendency to discount 
opinions that contradict their past judgment. A recent study on this bias showed that 
people are sensitive to the level of confidence with which social information is 
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communicated, provided that this information aligns with their prior beliefs (Kappes et 
al., 2020). Thus, people rely more on social information when it confirms their prior 
beliefs, especially when it is expressed with high confidence. This explanation could 
in theory be sufficient to account for the dependence of participants' JoA alignment on 
prior information (on whether or not they are in control) and the egocentric discounting 
phenomenon. It could also explain our result showing that participants' propensity to 
change their opinion increases with the extent of advice deviation from participants' 
initial JoA (that is, with the strength of disagreement). If this is the case, participants 
would treat the strength of advisor disagreement as the level of confidence in the 
advisors' opinion. This hypothesis remains to be tested.  
Among the characteristics of social feedback, we expected that the social preference 
evoked by the advisor’s facial traits (dominant vs non-dominant; trustworthy vs 
untrustworthy) would also have an impact on social influence. Our results did not 
provide conclusive evidence of this effect. One possible explanation is that our 
statistical power may have been insufficient despite (i) using mixed effect models that 
have greater sensitivity and reliability relative to standard statistical test (e.g. ANOVAs) 
that do not simultaneously analyse within- and between-subject variability, and (ii) 
maximizing the number of trials for each facial traits condition (54 trials per facial trait). 
Another possible explanation is that participants did not pay sufficient attention and/or 
did not memorize the different avatars they interacted with sequentially. Indeed, 
participants never interacted with the same advisor more than twice in a row. 
 

5.4 Contribution of past interactions between participants and 
advisors to JoA alignment 
Beyond the contribution of trial-wise (social and non-social) information to JoA, our 
results reveal that the history of past interactions between participants and advisors 
also influenced JoA alignment. Previous research has shown that current trial 
responses are biased by the previous trial response (i.e. serial dependence) in various 
domains (perceptual decision making, evaluation of stimuli properties, intentional 
binding, see (Di Costa et al., 2017; Fischer & Whitney, 2014; Liberman et al., 2014). 
However, it is not known whether the influence of social information on sense of 
agency (SoA) is also subject to serial dependence. Our study is the first to reveal that 
prior alignment of participants’ SoA (with feedback provided by one of the two 
advisors) increases the likelihood that they will align their JoA across trials.  
Finally, previous research has shown that participant and advisor history of agreement 
and disagreement impacted the likelihood of aligning the JoA with a disagreement 
from that same advisor in the current trial (Pescetelli et al., 2021). Our results did not 
provide conclusive evidence of such a ‘reciprocity’ effect between participants and 
each advisor. One possible explanation is that, as mentioned above, participants did 
not pay sufficient attention to and/or remember the advisors with whom they 
interacted. Another possibility is that our model is not sensitive enough to detect this 
effect. Furthermore, our model only takes into account previous encounters with the 
same avatar; it did not take into account all past interactions. More refined models of 
individual behaviour, such as social learning models (Maurer et al., 2018; Olsson et 
al., 2020), that take into account the entire history of interactions, might allow to study 
how social preference as well as the history of past interactions influence trust building 
and the subsequent decision to align with third-party feedback. 
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6. Conclusions 
Our work shows that judgments of agency (JoA) are subject to social influence. 
Individuals revise their own JoA in the light of (i) feedback produced by a third party 
(social information) about their own agentive experience, and its interaction with (ii) 
sensorimotor cues related to action control, and (iii) self-performance during the task. 
Interestingly, prior JoA alignments increase subsequent JoA revisions. Thus, our main 
contribution was to demonstrate that the JoA, which is central to sense of self, is 
constantly shaped by the integration of social and non-social information over time. 
We also disambiguated the unique contributions of these different sources of 
information to the formation of a sense of agency in social context. Our results open 
the possibility of better understanding how the JoA develops and may be involved in 
self-disorders fuelled by abnormal social interactions, such as in borderline personality 
disorder.  
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10. Supplementary Material  
 
10.1 Comparison of models predicting Performance. 
The baseline model is a linear mixed model, which includes game conditions as 
independent variables. The alternative model is a linear mixed model which 
corresponds to the baseline model including d-prime score in each participant instead 
of hit rate. The d-prime measured discrimination performance between targets (X) and 
distractors (O) (Green & Swets, 1966), and its calculation was adjusted for instances 
of zero false alarms (Mill & O’Connor, 2014; Snodgrass & Corwin, 1988). 
Model comparison results. Bayesian model comparison was performed using 
frequentist models via the BIC approximation (Makowski et al., 2019). A Bayes factor 
of less than 1/3 indicates "substantial" evidence in favour of the reference model. A 
Bayes factor greater than 3 indicates "substantial" evidence in favour of the alternative 
model (Wetzels et al., 2011). A Bayes factor greater than 150 indicates very strong 
evidence in favour of the alternative model. The Bayes factor indicates that the two 
model have the same predictive power. (BF Baseline model vs. Alt. Model = 1). 
 
Table S1 | linear mixed model of Performance (hit rate) (ℳ1). Regression 
coefficients of main and interaction effects. 

 Estimate 
(SE) 

t-value (df) p-value 2.5% 97.5% 

Main effects 

Intercept 0.347 
(0.005) 

67.62 
(27.994284) 

<2e-16 0.337 0.358 

Turbulence  -0.075 
(0.002) 

-30.69 
(27.993226) 

<2e-16 -0.080 -0.071 

Magic  0.104  
(0.002) 

46.37 
(27.999946) 

<2e-16 0.100 0.109 

Note: Columns show parameter estimates, standard errors, t-values and p-values 
based on the Satterthwaite approximation (Kuznetsova et al., 2017), lower and upper 
bounds of the bootstrapped 95% Confidence Intervals (bci).  
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10.2 Comparison of models predicting JoAs #1 
The baseline model is a linear mixed model that includes Turbulence, Magic, Hit rate, 
as independent variables, as well as the interaction between Turbulence and Hit rate 
variables, as well as Magic and Hit rate. The first alternative model is a linear mixed 
model that corresponds to the baseline model including d-prime scores calculated for 
each participant instead of hit rate. The d-prime score measures discrimination 
performance between targets (X) and distractors (O) (Green & Swets, 1966), and its 
calculation is adjusted for instances of zero false alarms (Mill & O’Connor, 2014; 
Snodgrass & Corwin, 1988). The second alternative model is a logistic mixed model 
including the same independent variables as in the baseline model, and treating JoA 
as a proportion of the maximum agency ratings (i.e. 7). The third alternative model is 
a logistic mixed model corresponding to the second alternative model but that includes 
d-prime scores instead of hit rate. Bayesian model comparison was made using 
frequentist models via BIC approximation (Makowski et al., 2019). A Bayes factor less 
than 1/3 indicates "substantial" evidence in favour of the reference model. A Bayes 
factor greater than 3 indicates "substantial" evidence in favour of the alternative model 
(Wetzels et al., 2011). A Bayes factor higher than 150 indicates very strong evidence 
in favour of the alternative model.  
 
Figure S1 | Comparison of models predicting the JoAs #1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Results of model comparison. A general overview (see 
Figure S1) of the Bayes factors indicates that alternative logistic 
models treating JoA as a proportion of the maximum agency 
ratings predicted the observed data better than other linear 
models. Second-order Bayes factors further indicated non 
substantial evidence in favour of the alternative logistic model 
including d-prime scores instead of hit rate BFlogistic, d-prime vs. logistic, 

hit rate = 1.522 
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Table S2 | Logistic mixed model of JoAs #1 including hit rate (ℳ2). Regression 
coefficients of main and interaction effects. 

  Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept 0.728 
(0.081) 

8.984 < 2e-16 0.576 0.890 

Turbulence - 0.554 
(0.075) 

-7.376 1.63e-13 -0.703 -0.410 

Magic 0.354 
(0.047) 

7.581 3.43e-14 0.269 0.450 

Performance 
(Hit rate) 

0.415 
(0.034) 

12.303 < 2e-16 0.347 0.479 

Interaction effects 

Turbulence × 
Performance 
(Hit rate) 

- 0.005 
(0.023) 

-0.230 0.818 -0.049 0.042 

Magic x 
Performance 
(Hit rate) 

0.011 
(0.029) 

0.377 0.706 -0.050 0.065 

Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
We computed VIF for all the regressors. We found an average VIF of 1.600 s.d. ± 
0.227 (median: 1.552, max: 1.891), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
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10.3 Alternative model of JoAs #1 including the dummy coded 
“Game conditions” variable (ℳ2b) 
 
Table S3 | Logistic mixed model of JoAs #1 including the dummy coded “Game 
conditions” variable (ℳ2b ;Nobs = 6786; Nsubj = 29). In order to specifically 
contrast the effect of the Magic versus Control condition on JoA #1, we performed an 
additional analysis using the ℳ2 model including the “Game conditions” variable 
(Control, Turbulence and Magic) as a categorical variable after dummy coding (instead 
of deviation contrast coding), with the Control condition as the reference level.  

 Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept 0.928 
(0.109) 

8.538 < 2e-16 0.702 1.124 

Turbulence - 0.754 
(0.110) 

-6.888 5.66e-12 -0.962 -0.543 

Magic 0.154 
(0.040) 

3.843 1.21e-4 0.075 0.231 

Performance 
(Hit rate) 

0.410 
(0.040) 

10.175 < 2e-16 0.334 0.490 

Interaction effects 

Turbulence × 
Performance 
(Hit rate) 

0.000 
(0.035) 

0.003 0.997 -0.071 0.100 

Magic x 
Performance 
(Hit rate) 

0.016 
(0.046) 

0.359 0.720 -0.070 0.064 

Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms. Game agentive conditions 
(Control, Turbulence and Magic) were included in the models as a categorical variable 
after dummy coding with the Control condition as the reference level. 
We computed VIF for all the regressors. We found an average VIF of 3.175 s.d. ± 
1.294 (median: 2.891, max: 5.103), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
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10.4 Comparison of models predicting JoAs alignment 
The baseline model is a logistic mixed model that includes Turbulence, Magic, Hit rate, 
JoA #1, Disagreement strength, Disagreement valence, as main predictors. The model 
also includes interaction terms between Disagreement valence and game conditions, 
as well as participant’s mean offline JoA and JoAs alignment during the previous 
interaction with the same advisor. The alternative model corresponds to the baseline 
model including d-prime score in each participant instead of hit rate. The d-prime score 
measures discrimination performance between targets (X) and distractors (O) (Green 
& Swets, 1966), and its calculation is adjusted for instances of zero false alarms (Mill 
& O’Connor, 2014; Snodgrass & Corwin, 1988). Bayesian model comparison was 
made using frequentist models via BIC approximation (Makowski et al., 2019). A 
Bayes factor less than 1/3 indicates substantial evidence in favour of the reference 
model (Wetzels et al., 2011). 
Model comparison results. The models comparison for JoAs alignment indicated 
that the baseline logistic mixed model treating performance during the game as the Hit 
rate predicted the observed data better than the alternative model (BFBaseline vs. Alt. Model 
= 0.008 < 1/3).  
 
Table S4 | Logistic mixed model of JoAs alignment (ℳ3; Nobs = 4172; Nsubj = 
29). Regression coefficients of main and interaction effects of the model are reported 
in the main text. 

  Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects  

Intercept -0.856 
(0.162) 

-5.263 1.42e-07 - 1.193 - 0.520 

Turbulence -0.062 
(0.070) 

-0.881 0.38 - 0.207 0.077 

Magic 0.138 
(0.078) 

1.784 0.074  - 0.010 0.303 

Performance 
(Hit rate) 

-0.192 
(0.056) 

-3.413 0.001 - 0.306 - 0.070 

JoAs #1 -0.007 
(0.056) 

-0.134 0.894 - 0.121 0.096 

Disagreement 
strength 

0.597 
(0.156) 

3.829 1.29-e4 0.289 0.929 

Disagreement 
valence 

0.304 
(0.150) 

2.029 0.042 0.012 0.629 
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Offline mean 
JoA 

-0.322 
(0.206) 

-1.563 0.118 - 0.725 0.073 

Previous 
alignment 

0.214 
(0.085) 

2.510 0.012  0.033 0.391 

Interaction effects 

Magic x 
Disagreement 
valence   

0.675 
(0.138) 

4.902 9.47e-07 0.414 0.946 

Turbulence x 
Disagreement 
valence  

-0.762 
(0.134) 

-5.672 1.41e-08 -1.031 -0.512 

Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
We computed VIF for all the regressors. We found an average VIF of 1.519 s.d. ± 
0.434 (median: 1.332, max: 2.348), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
 

10.5 independent version of ℳ3 including past agreement with the 
same advisor (ℳ3b) 
 
Table S5 | Logistic mixed model of JoAs alignment, including past agreement 
instead of past JoA aligment during past interaction with the same advisor (ℳ3b 
Nobs = 4172; Nsubj = 29).  
Regression coefficients of main and interaction effects. The effect of primary interest 
(past agreement) is highlighted in bold. 

  Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept -0.881 
(0.169) 

-5.220 1.79e-07 - 1.237 
 

- 0.570 

Turbulence -0.064 
(0.070) 

-0.908 0.364 - 0.205 0.081 

Magic 0.141 
(0.078) 

1.830 0.067 - 0.006 0.287 
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Performance (Hit 
rate) 

-0.194 
(0.056) 

-3.448 5.65e-4 - 0.314 - 0.093 

JoAs #1 -0.007 
(0.056) 

-0.129 0.898 - 0.119 0.093 

Disagreement 
strength 

0.597 
(0.156) 

3.822 1.32e-4 0.292 0.906 

Disagreement 
valence 

0.301 
(0.149) 

2.013 0.044 0.033 0.618 
 

Offline mean JoA -0.335 
(0.214) 

-1.569 0.117 - 0.733 0.093 

Past agreement  0.119 
(0.080) 

1.481 0.139 - 0.045 0.280 

Interaction effects 

Magic x 
Disagreement 
valence   

0.676 
(0.138) 

 
4.884 

1.04e-06 0.413 0.945 

Turbulence x 
Disagreement 
valence  

-0.757 
(0.134) 

-5.663 1.49e-08 - 1.014 - 0.497 

Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
Past agreement represents the advisor's past agreement with the participant during 
their previous interaction, and was coded as Past agreement = 0.5, Past disagreement 
= -0.5. 
We computed VIF for all the regressors. We found an average VIF of 1.516 s.d. ± 
0.434 (median: 1.332, max: 2.348), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
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10.6 Extensions of ℳ3 investigating the impact of advisors’ facial 
features on JoAs alignment 
 
Table S6 | Logistic mixed model of JoAs alignment, including the variable 
representing the dimension along which the facial traits of the advisor vary 
(dominance versus trustworthiness dimensions) (ℳ3c; Nobs = 4172; Nsubj = 29).  
Regression coefficients of main and interaction effects. The effect of primary interest 
(Facial trait dimension) is highlighted in bold. 

 Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept -0.934 
(0.188) 

-4.965 6.86e-07 - 1.329 
 

- 0.573 

Turbulence -0.041 
(0.071) 

-0.583 0.560 - 0.183 
 

0.099 

Magic 0.113 
(0.078) 

1.454 0.146 - 0.046 
 

0.265 

Performance (Hit 
rate) 

-0.171 
(0.057) 

-2.975 0.003 - 0.276 
  

- 0.062 

JoAs #1 -0.001 
(0.057) 

-0.011 0.991 - 0.116 
 

0.119 

Disagreement 
strength 

0.603 
(0.158) 

3.818 1.35e-4 0.290 0.937 

Disagreement 
valence 

0.302 
(0.152) 

1.981 0.048 - 0.001 
 

 0.607 

Offline mean JoA -0.329 
(0.210) 

-1.568 0.117 - 0.747 
 

0.124 

Previous alignment 0.137 
(0.087) 

1.572 0.116 - 0.039 0.310 

Facial trait 
dimension 
(dummy coded) 

0.063 
(0.140) 

0.451 0.651 - 0.190 
 

0.324 
 

Interaction effects 
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Magic x 
Disagreement 
valence   

0.678 
(0.137) 

 
4.951 

7.39e-07 0.409 
 

0.968 

Turbulence x 
Disagreement 
valence  

- 0.765 
(0.133) 

- 5.734 9.81e-09 - 1.035 
 

- 0.522 

Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
Trials in which the participants interacted with advisors varying on either the dominant 
or trustworthiness dimension were divided into two distinct “social” blocks. Facial trait 
dimension represents each of these blocks, and was dummy coded as Dominance 
dimension = 1 (corresponding to trials in which the advisor's facial trait varied along 
the dominance dimension), Trustworthiness dimension = 0 (corresponding to trials in 
which the advisor's facial trait varied along the trustworthiness dimension). 
We computed VIF for all the regressors. We found an average VIF of 1.462 s.d. ± 
0.421 (median: 1.228, max: 2.349), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
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Table S7 | Logistic mixed model of JoAs alignment, including trustworthy vs 
untrustworthy advisors' facial traits (ℳ3d; Nobs = 2086; Nsubj = 29).  
Regression coefficients of main and interaction effects. The effect of primary interest 
(Trustworthiness) is highlighted in bold. 

 Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept - 0.933 
(0.188) 

- 4.958 7.14e-07 - 1.316 - 0.574 

Turbulence - 0.091 
(0.097) 

- 0.932 0.35141 - 0.292 0.112 

Magic 0.201 
(0.110) 

1.826 0.06787 - 0.008 0.444 

Performance 
(Hit rate) 

- 0.220 
(0.090) 

-2.446 0.01445 - 0.397 - 0.046 

JoAs #1 0.0123 
(0.080) 

0.153 0.87841 - 0.147 0.182 

Disagreement 
strength 

0.546 
(0.177) 

3.095 0.00197 0.203 0.907 

Disagreement 
valence 

0.404 
(0.201) 

2.006 0.04486 0.010  0.801 

Offline mean 
JoA 

- 0.362 
(0.223) 

- 1.625 0.10408 - 0.846 0.067 

Previous 
alignment 

- 0.051 
(0.125) 

- 0.408 0.68339 - 0.319 0.197 

Trustworthines
s 

- 0.023 
(0.108) 

- 0.216 0.829 - 0.244 0.176 

Interaction effects 

Magic x 
Disagreement 
valence   

0.647 
(0.221) 

2.937 0.003 0.227 1.084 

Turbulence x 
Disagreement 
valence  

- 0.761 
(0.188) 

- 4.047 5.20e-05 - 1.134 - 0.405 
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Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
Trustworthiness represents the facial traits of the advisors that vary according to the 
trustworthiness dimension in one of the "social" blocks, and was coded as Trustworthy 
= 0.5, un-trustworthy = -0.5. 
We computed VIF for all the regressors. We found an average VIF of 1.435 s.d. ± 
0.401 (median: 1.187, max: 2.224), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
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Table S8 | Logistic mixed model of JoAs alignment, including dominant vs non 
dominant advisors' facial traits (ℳ3e; Nobs = 2086; Nsubj = 29).  
Regression coefficients of main and interaction effects. The effect of primary interest 
(Dominance) is highlighted in bold. 

 Estimate 
(SE) 

z-value p-value 2.5% 97.5% 

Main effects 

Intercept - 0.956 
(0.204) 

- 4.683 2.83e-06 - 1.395 
 

- 0.582 

Turbulence - 0.024 
(0.111) 

- 0.219 0.827 - 0.229 
 

0.208 
 

Magic 0.030 
(0.123) 

0.248 0.804 - 0.215 
 

0.264 

Performance (Hit 
rate) 

- 0.095 
(0.0815) 

- 1.161 0.246 - 0.254 
  

0.079 
 

JoAs #1 - 0.008 
(0.0830) 

- 0.092 0.926 - 0.165 
 

0.160 
 

Disagreement 
strength 

0.711 
(0.196) 

3.631 2.83e-4 0.340 
 

1.109 

Disagreement 
valence 

0.208 
(0.172) 

1.208 0.227 - 0.133 
 

 0.556 

Offline mean JoA - 0.303 
(0.250) 

- 1.212 0.226 - 0.770 
 

0.194 

Previous 
alignment 

0.312 
(0.132) 

2.370 0.018 0.052 
 

0.601 

Dominance - 0.035 
(0.112) 

- 0.312 0.755 - 0.263 
 

0.174 

Interaction effects 

Magic x 
Disagreement 
valence   

0.715 
(0.186) 

 
3.849 

1.19e-4 0.326 1.098 

Turbulence x 
Disagreement 
valence  

- 0.790 
(0.201) 

- 3.935 8.33e-05 - 1.217 - 0.391 
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Note: Columns show parameter estimates, standard errors, z-values, p-values, lower 
and upper bounds of the bootstrapped 95% Confidence Intervals (bci). Parameter 
estimates standard error and their associated p-values were obtained using Wald 
method (Bates et al., 2015). "x" denotes interaction terms.  
Dominance represents the facial traits of the advisor that vary according to the 
dominance dimension in one of the "social" blocks, and was coded as Dominant = 0.5, 
Non-dominant = -0.5. 
We computed VIF for all the regressors. We found an average VIF of 1.495 s.d. ± 
0.446276 (median: 1.280, max: 2.544), suggesting that multicollinearity between 
regressors was not an issue in our model (Kock & Lynn, 2012). 
 


